PHYS5150 - PLASMA PHYSICS

LECTURE 6 - ADIABATIC INVARIANTS

Sascha Kempf*
G2B41, University of Colorado, Boulder

Spring 2023

1 ADIABATIC INVARIANTS

The presence of adiabatic invariants is actually a common phenomenon, which has been studied extensively in classical mechanics. Here we follow Landau \& Lifschitz and consider a one-dimensional finite motion, where λ is a parameter describing a very slow change of the system. Here, slow means slow compared to the period T of the cyclic motion, i.e. $T \dot{\lambda} \ll \lambda$. Now, because λ is slowly changing, so is the energy E of the system, where $\dot{E} \sim \dot{\lambda}$. This implies that the change of energy is a function of λ, from what follows that there is a combination of E and λ, a so-called adiabatic invariant, which remains constant.

Now let $H(p, q ; \lambda)$ be the Hamiltonian of such a system, where again λ is the parameter characterizing the slow change. Then,

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{\partial H}{\partial t}=\frac{\partial H}{\partial \lambda} \frac{\mathrm{~d} \lambda}{\mathrm{~d} t}
$$

Now we average over one cycle T and assume that $\dot{\lambda}$ does not change on this time scale

$$
\frac{\overline{\mathrm{d} E}}{\mathrm{~d} t}=\frac{\mathrm{d} \lambda \overline{\overline{\partial H}}}{\mathrm{~d} t} \frac{1}{\partial \lambda} .
$$

Now,

$$
\frac{\overline{\partial H}}{\partial \lambda}=\frac{1}{T} \int_{0}^{T} \frac{\partial H}{\partial \lambda} \mathrm{~d} t
$$

[^0]and using that $\dot{q}=\frac{\partial H}{\partial p}$ we obtain
$$
\frac{\overline{\partial H}}{\partial \lambda}=\frac{1}{T} \oint \frac{\partial H}{\partial \lambda}\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q .
$$

By further noting that

$$
T=\int_{0}^{T} \mathrm{~d} t=\oint\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q
$$

we get

$$
\frac{\overline{\partial H}}{\partial \lambda}=\frac{\oint \frac{\partial H}{\partial \lambda}\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q}{\oint\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q},
$$

and thus

$$
\frac{\overline{\mathrm{d} E}}{\mathrm{~d} t}=\frac{\mathrm{d} \lambda}{\mathrm{~d} t} \frac{\oint \frac{\partial H}{\partial \lambda}\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q}{\oint\left(\frac{\partial H}{\partial p}\right)^{-1} \mathrm{~d} q} .
$$

We have assumed that λ is constant along the integration path, which implies that $E=H(p, q ; \lambda)$ is constant as well. Differentiating H with respect to λ gives

$$
0=\frac{\partial H}{\partial \lambda}+\frac{\partial H}{\partial p} \frac{\partial p}{\partial \lambda},
$$

and thus

$$
\frac{\partial H}{\partial \lambda}\left(\frac{\partial H}{\partial p}\right)^{-1}=-\frac{\partial p}{\partial \lambda} .
$$

After substituting this expression into our expression for the change of the mean energy we get

$$
\frac{\overline{\mathrm{d} E}}{\mathrm{~d} t}=-\frac{\mathrm{d} \lambda}{\mathrm{~d} t} \frac{\oint \frac{\partial p}{\partial \lambda} \mathrm{~d} q}{\oint \frac{\partial p}{\partial E} \mathrm{~d} q},
$$

or

$$
0=\oint\left(\frac{\partial p}{\partial E} \frac{\mathrm{~d} E}{\mathrm{~d} t}+\frac{\partial p}{\partial \lambda} \frac{\mathrm{~d} \lambda}{\mathrm{~d} t}\right) \mathrm{d} q=\frac{\mathrm{d}}{\mathrm{~d} t} \oint p \mathrm{~d} q .
$$

This result implies that the adiabatic invariant

$$
\begin{equation*}
I=\frac{1}{2 \pi} \oint p \mathrm{~d} q \tag{1}
\end{equation*}
$$

remains constant even when the parameter λ is changing slowly. I is actually the area
enclosed by periodic path of the system in the phase space.

1.1 Example: Harmonic Oscillator

As an example lets us consider a harmonic oscillator, which has the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} .
$$

The system's path describes an ellipse with the semi-major axises $\sqrt{2 m E}$ and $\sqrt{2 E / m \omega^{2}}$, and the area

$$
A=2 \pi \sqrt{2 m E} \sqrt{2 E / m \omega^{2}}=2 \pi \frac{E}{\omega} .
$$

This implies that the oscillator has an adiabatic invariant

$$
\begin{equation*}
I_{o s c}=\frac{E}{\omega}, \tag{2}
\end{equation*}
$$

which is conserved even when the oscillator's mass or k varies.

2 MAGNETIC MOMENT AS A CONSTANT OF MOTION

We now investigate the guiding center motion of a charged particle along an inhomogeneous magnetic field. We assume that the field is axially symmetric (i.e. $\mathbf{B}=\left(B_{\rho}, B_{\phi}, B_{z}\right)$ with $\left.\partial_{\phi} \mathbf{B}=0\right)$, where the symmetry axis z is aligned with the field gradient $\nabla \mathbf{B}=\partial_{z} B_{z}$. We only consider particle motions close to the symmetry axis where we can safely ignore the dependence of $\partial_{z} B_{z}$ on the radial distance ρ.

From Gauss' law $\nabla \cdot \mathbf{B}=0$ follows that

$$
\nabla \cdot \mathbf{B}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho B_{\rho}\right)+\frac{\partial B_{z}}{\partial z}=0,
$$

and after performing the integration with respect to ρ

$$
\begin{equation*}
B_{\rho}=-\frac{1}{2}\left(\frac{\partial B_{z}}{\partial z}\right) \rho . \tag{3}
\end{equation*}
$$

Note that this relation is only valid close to the symmetry axis because we assumed that $\frac{\partial B_{z}}{\partial z} \neq f(\rho)$. The particle's motion parallel to the symmetry axis is given by

$$
\begin{equation*}
m \frac{\mathrm{~d} v_{z}}{\mathrm{~d} t}=F_{z}=q\left(v_{x} B_{y}-v_{y} B_{x}\right), \tag{4}
\end{equation*}
$$

where the field components B_{x} and B_{y} are given by Eq. (3)

$$
\begin{align*}
B_{x} & =-\frac{1}{2} q\left(\frac{\partial B_{z}}{\partial z}\right) x, \tag{5}\\
B_{y} & =-\frac{1}{2} q\left(\frac{\partial B_{z}}{\partial z}\right) y . \tag{6}
\end{align*}
$$

With that we get

$$
\begin{equation*}
F_{z}=-\frac{1}{2} q \frac{\partial B_{z}}{\partial z}\left(v_{x} y-v_{y} x\right) \tag{7}
\end{equation*}
$$

Let us now assume that $\frac{\partial B_{z}}{\partial z}$ is small, so that the motion in the $x-y$ plane will be circular

$$
\begin{aligned}
& x=\rho_{c} \sin \omega_{c} t \\
& y=\rho_{c} \cos \omega_{c} t \frac{q}{|q|} .
\end{aligned}
$$

The $q /|q|$ term in the expression for y accounts for the direction of the gyro motion. The corresponding velocity components are then

$$
\begin{aligned}
& v_{x}=\omega_{c} \rho_{c} \cos \omega_{c} t \\
& v_{y}=-\frac{q}{|q|} \omega_{c} \rho_{c} \sin \omega_{c} t
\end{aligned}
$$

and thus

$$
F_{z}=-\frac{\partial B_{z}}{\partial z}\left(\frac{|q|}{2} \omega_{c} \rho_{c}^{2}\right)
$$

Recall that the magnetic moment is

$$
\mu=\frac{m \mathbf{v}_{\perp}^{2}}{2 B}=\frac{T_{\perp}}{B},
$$

or after expressing \mathbf{v}_{\perp} by ω_{c} and ρ_{c}

$$
\mu=\left(\frac{|q|}{2} \omega_{c} \rho_{c}^{2}\right),
$$

and hence

$$
\begin{equation*}
F_{z}=-\frac{\partial B_{z}}{\partial z} \mu \tag{8}
\end{equation*}
$$

This result implies that the particle is repelled from strong magnetic field regions.
Now we have a closer look at the particle's azimuthal motion in the $x-y$ plane. Here the force acting on the particle is

$$
\begin{equation*}
F_{\phi}=q v_{z} B_{\rho}, \tag{9}
\end{equation*}
$$

from which follows that the rate of change of the kinetic energy of the motion in this plane is

$$
\frac{\mathrm{d} T_{\perp}}{\mathrm{d} t}=v_{\phi} q v_{z} B_{\rho}
$$

After using Eq. (3) and replacing v_{ϕ} by $-q /|q| \mathbf{v}_{\perp}$ we find that

$$
\frac{\mathrm{d} T_{\perp}}{\mathrm{d} t}=|q| \mathbf{v}_{\perp} v_{z} \frac{\partial B_{z}}{\partial z} \frac{\rho}{2}
$$

Note that while the total kinetic energy T is conserved, T_{\perp} is not constant. After replacing ρ with ρ_{c} we get

$$
\begin{equation*}
\dot{T}_{\perp}=\frac{T_{\perp} v_{z}}{B} \frac{\partial B_{z}}{\partial z} \tag{10}
\end{equation*}
$$

Finally, knowledge of \dot{T}_{\perp} enables us to derive the rate of change of the magnetic moment

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{T_{\perp}}{B}\right)=\frac{1}{B} \dot{T}_{\perp}-\frac{T_{\perp}}{B^{2}} \dot{B}
$$

Using that $\dot{B}=v_{z} \partial_{z} B_{z}$ yields

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{1}{B} \dot{T}_{\perp}-\frac{T_{\perp}}{B^{2}} v_{z} \frac{\partial B_{z}}{\partial z}
$$

and after inserting Eq. (10)

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} t}=\frac{T_{\perp}}{B^{2}} v_{z} \frac{\partial B_{z}}{\partial z}-\frac{T_{\perp}}{B^{2}} v_{z} \frac{\partial B_{z}}{\partial z}=0
$$

The magnetic moment μ is a constant of motion for a $\mathbf{B} \| \nabla \mathbf{B}$ field configuration. Such a field configuration constitute a magnetic mirror - a particle moving into the strong field region will eventually reflected back into the weak field domain.

[^0]: *sascha.kempf@colorado.edu

