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1 ADIABATIC INVARIANTS

The presence of adiabatic invariants is actually a common phenomenon, which has
been studied extensively in classical mechanics. Here we follow Landau & Lifschitz
and consider a one-dimensional finite motion, where A is a parameter describing a
very slow change of the system. Here, slow means slow compared to the period T of
the cyclic motion, i.e. TA < X. Now, because )\ is slowly changing, so is the energy
E of the system, where E ~ . This implies that the change of energy is a function
of A, from what follows that there is a combination of E and A, a so-called adiabatic
invariant, which remains constant.

Now let H(p,q;\) be the Hamiltonian of such a system, where again A is the
parameter characterizing the slow change. Then,

dE_9H _9H d)
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Now we average over one cycle 7 and assume that A does not change on this time
scale
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and using that § = p H we obtain
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By further noting that

we get
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and thus
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We have assumed that A is constant along the integration path, which implies that
E = H(p,q;\) is constant as well. Differentiating H with respect to A gives
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and thus
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After substituting this expression into our expression for the change of the mean
energy we get
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This result implies that the adiabatic invariant
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remains constant even when the parameter A is changing slowly. [ is actually the area
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enclosed by periodic path of the system in the phase space.

1.1 Example: Harmonic Oscillator

As an example lets us consider a harmonic oscillator, which has the Hamiltonian

2
p- 1 5,
H=—+—- .
2m+2qu

The system’s path describes an ellipse with the semi-major axises v/2mE and /2E /mw?,
and the area

E
A =21V2mE\/2E /mw? = 21—.
w

This implies that the oscillator has an adiabatic invariant

Iosc = (2)
w

which is conserved even when the oscillator’s mass or k varies.

2 MAGNETIC MOMENT AS A CONSTANT OF MOTION

We now investigate the guiding center motion of a charged particle along an in-
homogeneous magnetic field. We assume that the field is axially symmetric (i.e.
B = (B, By, B;) with 4B = 0), where the symmetry axis z is aligned with the field
gradient VB = d,B,. We only consider particle motions close to the symmetry axis
where we can safely ignore the dependence of d.B; on the radial distance p.

From Gauss’ law V - B = 0 follows that
1 d 0B,

V-B=—-—(pB — =0
0 ap (p P) + az ’
and after performing the integration with respect to p
1 (9B,
By,=—=|="]p. 3
P 2 ( 0z > P ©)

Note that this relation is only valid close to the symmetry axis because we assumed
that aa—iz # f(p). The particle’s motion parallel to the symmetry axis is given by

dv: _

dr

m F,.=q (VxBy - VyBx) s 4)
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where the field components B, and By, are given by Eq. (3)

1 (0B,
B, = —54 <az> X, 5
1 (0B,
B, = _Eq <8z> Y- (6)
With that we get
1 0B,
F, = 395, (vey —vyx) . @

Let us now assume that aa—liz is small, so that the motion in the x-y plane will be circular
X = ¢ SInwet

Y = PcCOs wcti.

4|

The g/|q| term in the expression for y accounts for the direction of the gyro motion.
The corresponding velocity components are then

Vy = W¢Pe COS Wt

q .
Vy = —— W¢Pe SINWet,
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Recall that the magnetic moment is

and thus

mv2L T
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or after expressing v by w. and p.
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and hence

3B,
F=-—7q ®)

This result implies that the particle is repelled from strong magnetic field regions.

Now we have a closer look at the particle’s azimuthal motion in the x-y plane.
Here the force acting on the particle is

F¢ = qVZBP7 (9)
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from which follows that the rate of change of the kinetic energy of the motion in this

plane is

dT,
4 VoqvzBo.

After using Eq. (3) and replacing v¢ by —¢q/|q|v. we find that

Note that while the total kinetic energy T is conserved, 7| is not constant. After
replacing p with p. we get

_ TLVz E)BZ

T B oz (19

Finally, knowledge of 7 enables us to derive the rate of change of the magnetic

moment

d]/l_d TJ_ _1 TJ_.
dt_dt<B) =gl gt

Using that B = v,d,B, yields
dy 1. T, 0B,
— =1 — 7VZ7
dt B B2 " 0z
and after inserting Eq. (10)

dp T, 0B, T, OB, 0

—_— = —=V,—— — —&=V,— = U.

dt B2 0z B2 oz
The magnetic moment  is a constant of motion for a B||VB field configuration. Such
a field configuration constitute a magnetic mirror — a particle moving into the strong

field region will eventually reflected back into the weak field domain.
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