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1 adiabatic invariants

The presence of adiabatic invariants is actually a common phenomenon, which has
been studied extensively in classical mechanics. Here we follow Landau & Lifschitz
and consider a one-dimensional finite motion, where λ is a parameter describing a
very slow change of the system. Here, slow means slow compared to the period T of
the cyclic motion, i.e. T λ̇� λ. Now, because λ is slowly changing, so is the energy
E of the system, where Ė ∼ λ̇. This implies that the change of energy is a function
of λ, from what follows that there is a combination of E and λ, a so-called adiabatic
invariant, which remains constant.

Now let H(p,q;λ) be the Hamiltonian of such a system, where again λ is the
parameter characterizing the slow change. Then,

dE
dt

=
∂H
∂t

=
∂H
∂λ

dλ
dt

.

Now we average over one cycle T and assume that λ̇ does not change on this time
scale

dE
dt

=
dλ
dt

∂H
∂λ

.

Now,

∂H
∂λ

=
1
T

T∫
0

∂H
∂λ

dt,
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and using that q̇ = ∂H
∂p we obtain

∂H
∂λ

=
1
T

∮
∂H
∂λ

(
∂H
∂p

)−1

dq.

By further noting that

T =

T∫
0

dt =
∮ (

∂H
∂p

)−1

dq

we get

∂H
∂λ

=

∮
∂H
∂λ

(
∂H
∂p

)−1
dq∮ (

∂H
∂p

)−1
dq

,

and thus

dE
dt

=
dλ
dt

∮
∂H
∂λ

(
∂H
∂p

)−1
dq∮ (

∂H
∂p

)−1
dq

.

We have assumed that λ is constant along the integration path, which implies that
E = H(p,q;λ) is constant as well. Differentiating H with respect to λ gives

0 =
∂H
∂λ

+
∂H
∂p

∂p
∂λ

,

and thus

∂H
∂λ

(
∂H
∂p

)−1

=−∂p
∂λ

.

After substituting this expression into our expression for the change of the mean
energy we get

dE
dt

=−dλ
dt

∮
∂p
∂λ

dq∮
∂p
∂E dq

,

or

0 =
∮ (

∂p
∂E

dE
dt

+
∂p
∂λ

dλ
dt

)
dq =

d
dt

∮
pdq.

This result implies that the adiabatic invariant

I =
1

2π

∮
pdq (1)

remains constant even when the parameter λ is changing slowly. I is actually the area
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enclosed by periodic path of the system in the phase space.

1.1 Example: Harmonic Oscillator

As an example lets us consider a harmonic oscillator, which has the Hamiltonian

H =
p2

2m
+

1
2

mω2q2.

The system’s path describes an ellipse with the semi-major axises
√

2mE and
√

2E/mω2,
and the area

A = 2π
√

2mE
√

2E/mω2 = 2π
E
ω
.

This implies that the oscillator has an adiabatic invariant

Iosc =
E
ω
, (2)

which is conserved even when the oscillator’s mass or k varies.

2 magnetic moment as a constant of motion

We now investigate the guiding center motion of a charged particle along an in-
homogeneous magnetic field. We assume that the field is axially symmetric (i.e.
B = (Bρ,Bφ,Bz) with ∂φB = 0), where the symmetry axis z is aligned with the field
gradient ∇B = ∂zBz. We only consider particle motions close to the symmetry axis
where we can safely ignore the dependence of ∂zBz on the radial distance ρ.

From Gauss’ law ∇ ·B = 0 follows that

∇ ·B =
1
ρ

∂

∂ρ
(ρBρ)+

∂Bz

∂z
= 0,

and after performing the integration with respect to ρ

Bρ =−
1
2

(
∂Bz

∂z

)
ρ. (3)

Note that this relation is only valid close to the symmetry axis because we assumed
that ∂Bz

∂z , f (ρ). The particle’s motion parallel to the symmetry axis is given by

m
dvz

dt
= Fz = q(vxBy− vyBx) , (4)
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where the field components Bx and By are given by Eq. (3)

Bx =−
1
2

q
(

∂Bz

∂z

)
x, (5)

By =−
1
2

q
(

∂Bz

∂z

)
y. (6)

With that we get

Fz =−
1
2

q
∂Bz

∂z
(vxy− vyx) . (7)

Let us now assume that ∂Bz
∂z is small, so that the motion in the x-y plane will be circular

x = ρc sinωct

y = ρc cosωct
q
|q|

.

The q/|q| term in the expression for y accounts for the direction of the gyro motion.
The corresponding velocity components are then

vx = ωcρc cosωct,

vy =−
q
|q|
ωcρc sinωct,

and thus

Fz =−
∂Bz

∂z

(
|q|
2
ωcρ

2
c

)
.

Recall that the magnetic moment is

µ=
mv2
⊥

2B
=

T⊥
B
,

or after expressing v⊥ by ωc and ρc

µ=

(
|q|
2
ωcρ

2
c

)
,

and hence

ωc =; ρc =

Fz =−
∂Bz

∂z
µ. (8)

This result implies that the particle is repelled from strong magnetic field regions.

Now we have a closer look at the particle’s azimuthal motion in the x-y plane.
Here the force acting on the particle is

Fφ= qvzBρ, (9)
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from which follows that the rate of change of the kinetic energy of the motion in this
plane is

dT⊥
dt

= vφqvzBρ.

After using Eq. (3) and replacing vφ by −q/|q|v⊥ we find that

dT⊥
dt

= |q|v⊥vz
∂Bz

∂z
ρ

2
.

Note that while the total kinetic energy T is conserved, T⊥ is not constant. After
replacing ρ with ρc we get

Ṫ⊥ =
T⊥vz

B
∂Bz

∂z
. (10)

Finally, knowledge of Ṫ⊥ enables us to derive the rate of change of the magnetic
moment

dµ
dt

=
d
dt

(
T⊥
B

)
=

1
B

Ṫ⊥−
T⊥
B2 Ḃ.

Using that Ḃ = vz∂zBz yields

dµ
dt

=
1
B

Ṫ⊥−
T⊥
B2 vz

∂Bz

∂z

and after inserting Eq. (10)

dµ
dt

=
T⊥
B2 vz

∂Bz

∂z
− T⊥

B2 vz
∂Bz

∂z
= 0.

The magnetic moment µ is a constant of motion for a B‖∇B field configuration. Such
a field configuration constitute a magnetic mirror – a particle moving into the strong
field region will eventually reflected back into the weak field domain.
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